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ABSTRACT. In this paper we study the class of descriptive compact spaces, the Banach
spaces generated by descriptive compact subsets and their relation with renorming prob-
lems.

1. INTRODUCTION

Compact Hausdorff spaces which are fragmentable by a finer metric have been studied
by many authors, see the book [7] for an account of this class of compacta. In this paper we
shall consider a subclass of fragmentable compact spaces [25], namelyD, that will allow
us to construct an equivalent dual strictly convex norm on a dual Banach spaceX∗ if the
dual unit ball lies inD. We have to introduce some terminology. Let{Hi : i ∈ I} be a
family of subsets of a topological space(X, τ). The family is said to beisolatedif it is
discrete in its union endowed with the relative topology, that is, if for everyi ∈ I and every
x ∈ Hi, there is aτ -neighbourhoodU of x such thatHj ∩ U = ∅ for everyj ∈ I, j 6= i.
If it is possible to pickU from some prefixed familyS ⊂ τ , we say that the family is
isolated with respect toS. If there is a decompositionI =

⋃∞
n=1 In such that every family

{Hi : i ∈ In} is isolated (with respect toS), then the family{Hi : i ∈ I} is said to be
σ-isolated(with respect toS). Finally a familyN of subsets ofX is said to be anetwork
for the topology ofX if every open set is a union of members ofN.

Definition 1.1. A compact Hausdorff spaceK is said to be a descriptive compact space if
its topology has aσ-isolated network.

The class of topological spaces having aσ-isolated network generalizes in a natural way
metrizable spaces (Bing-Nagata-Smirnov Theorem, see e.g.[15]). These spaces were first
studied by Hansell in its pioneering work [10] recently published in [12]. He proved there,
among other results, that if a topological space is fragmented by a finer metric, then it has
σ-isolated network if, and only if, it has a certain covering property, namely, the space is
hereditarily weaklyθ-refinable. Descriptive Banach spaces have been studied in [12, 20]
and also in the context of renorming theory in [17, 18, 22, 23,24].

The first and more clear example of a descriptive compact space one may come across is
any metrizable compact. Embeddings intoc0(Γ) of Eberlein compacta show that they are
descriptive, since(c0(Γ), pointwise) has aσ-isolated network, [12, 20]. More generally,
Gul’ko compact spaces are shown to be descriptive too, see for instance [25]. Scattered
compactaK with K(ω1) = ∅ are also descriptive: just consider as singletons the points
of each relatively discrete set{K(α) \ K(α+1) : 0 ≤ α < γ} whereγ < ω1 is such that
K(γ) = ∅. We shall show later, Lemma 4.6, that Corson compact spaces defined by “al-
most disjoint families of sets” are also descriptive, whichincludes an interesting example
of compactum built by Argyros and Mercourakis [1]. On the other hand, the compactum
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[0, ω1] is not descriptive [12], see also Example 4.4.

Let us turn now our attention to renorming problems. Some results have been obtained
recently showing that geometrical properties such as the existence of equivalent Kadec or
locally uniformly rotund (LUR) norms in a Banach spaceX can be characterized by the
existence of certain types of networks of the norm topology which areσ-isolated for the
weak topology ofX (LUR norms [17, 18, 23], dual LUR norms [23, 24] and Kadec norms
[22]). Recently, in [8], it has been proved that the dual unitball (with its weak∗ topology)
is uniformly Eberlein if, and only if, the dual space has aw∗-UR equivalent norm, which
is equivalent toX have a uniformly Gateaux smooth equivalent norm. We shall introduce
in general the concept ofτ -LUR norm, forτ a locally convex topology.

Definition 1.2. A norm‖.‖ on X is said to beτ -locally uniformly rotund at some point
x ∈ X if for every(xn) ⊂ X with limn ‖xn‖ = ‖x‖ and limn ‖x + xn‖ = 2‖x‖, then
τ -limn xn = x.
A norm‖.‖ on X is said to beτ -locally uniformly rotund (τ -LUR) if it is τ -lower semi-
continuous andτ -locally uniformly rotund atx for everyx ∈ X.

For the case of the weak topology, Moltó, Orihuela, Troyanski and Valdivia [18] proved
that aw-LUR Banach space has an equivalent LUR norm. Mercourakis showed that the
spacec1(Σ

′ × Γ) has apointwise-LUR equivalent norm. He used that fact to build an
equivalentw∗-LUR norm in a dual of a WCD Banach space, see also [6]. The main result
in [25] shows that a dual Banach spaceX∗ admits an equivalentw∗-LUR norm if, and
only if, (BX∗ , w∗) is a descriptive compact space.

In this paper we give sufficient and necessary conditions on aBanach spaceX and
a locally convex topologyτ to obtain aτ -LUR norm (equivalent or coarser) onX. For
F ⊂ X∗ a total subspace we shall consider its associated normpF (x) = sup{x∗(x) :
x∗ ∈ BX∗ ∩ F}. Recall thatF is said norming ifpF is an equivalent norm onX. Our
main result is about “descriptively generated spaces”:

Theorem 1.3. LetX be a Banach space,F ⊂ X∗ a total subspace andK ⊂ X a descrip-
tiveσ(X,F )-compact subset such thatX = span‖.‖(K). Then the following affirmations
hold:

(1) X admits a coarserσ(X,F )-LUR norm and the topologyσ(X,F ) on X has a
σ-isolated network.

(2) Moreover, ifK is fragmented bypF , thenX admits a coarser norm which ispF -
LUR andσ(X,F )-lower semi-continuous.

(3) The norms given in (1) and (2) can be taken equivalent to the original norm ofX
if, and only if,F is norming.

This theorem covers both the cases of weakly compactly generated Banach spaces and
dual Banach spaces such that(BX∗ , w∗) is a descriptive compactum. Since a weakly com-
pact subset of a Banach space is descriptive and norm fragmented, we get Troyanski’s
result: a WCG Banach space is LUR renormable, see [6]. The theorem also applies to
Banach spaces with a Markusevich basis. Indeed, if{xα, fα} is a M-basis onX, and
F = span‖.‖{fα}, then({xα} ∪ {0}) is a descriptiveσ(X,F )-compact that generates
X. Let us say that statement (2) above also can be deduced usingresults from [24]. The
topological properties of Banach spaces generated by a normfragmentable compact space
has been recently studied in [5].

Recall that descriptive compact spaces are fragmentable [25], see Corollary 2.6 for a
self-contained proof. In section 2 we study the structure ofa descriptive compactum with
respect to a finer fragmenting metric. Section 3 is devoted torenorming, including the proof
of Theorem 1.3. In the last section we show that the class of descriptive compacta has a
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behaviour similar to the class of fragmentable compacta, studied by Ribarska [26], see also
[7]. Moreover, descriptive compact spaces have nicer properties than fragmentable ones,
see Proposition 4.2. We also discuss some examples to give anaccount of how wide is the
class of descriptive compacta. Part of the results of this paper appeared in a preliminary
version of [25].

2. SPACES WITHσ-ISOLATED NETWORK

Hansell’s definition of descriptive topological spaces [12], later called isolated-analytic
spaces in [11], is quite technical. In the case of a compact topological space, being de-
scriptive in the sense of Hansell is equivalent to say that itsatisfies Definition 1.1.

The following definition has been used in [22, 23, 24].

Definition 2.1. LetS1 andS2 be families of subsets of a given setX. We say thatX has
P (S1,S2) with a sequence(An) of subsets ofX if for everyx ∈ X and everyV ∈ S1

with x ∈ V , there isn ∈ N andU ∈ S2 such thatx ∈ An ∩ U ⊂ V .

One can easily realize that this generalized propertyP is also transitive, that is, ifX has
P (S1,S2) andP (S2,S3) thenX hasP (S1,S3).

The following result links our propertyP with the existence ofσ-isolated networks.
Implicationi) ⇔ iii) appears in [10] for topologies.

Theorem 2.2. Let (X, τ) be a regular topological space and letS a subfamily ofτ . The
following statements are equivalent:

i) τ has a network which isσ-isolated with respect toS.
ii) There is a finer metricd such thatX hasP (d,S).

iii) There is a finer metricd such thatX hasP (d,S) with τ -closed sets.
iv) There exists a finer metricd, τ -closed setsAn and families{Ui : i ∈ In} of τ -

open sets which are union of sets fromS, such that the families{An∩Ui : i ∈ In}
are disjoint and{An ∩ Ui : n ∈ N, i ∈ In} is a network ford.

Proof. i) ⇒ iii) The first step will be to show that there is a metricd such thatX has
P (d, τ) with τ -closed sets, so it is enough to assume that the network is simply σ-isolated.
Let {Hi : i ∈ I} be a network andI =

⋃∞
n=1 In where each family{Hi : i ∈ In} is

isolated. SinceX is regular, the family{Hi
τ

: i ∈ I} is also a network forτ . Take now
τ -open setsUi for i ∈ In such that

Hi ⊂ Ui andUi ∩
⋃

{Hj : j ∈ In, j 6= i} = ∅.

SetA1
n =

⋃
i∈In

Hi

τ
. SinceUi is open, we haveHi ⊂ A1

n ∩ Ui ⊂ Hi
τ
. This implies

that{A1
n ∩ Ui : n ∈ N, i ∈ In} is a network forτ .

PutA2
n = A1

n \
⋃

i∈In
Ui. For everyn ∈ N, the family

Bn = {A2
n, X \ A1

n, A1
n ∩ Ui : i ∈ In}

is a partition ofX. It easy to see that
⋃∞

n=1 Bn is a subbasis for a metrizable topology.
Let d be a compatible metric with that topology. It is clear thatd is finer thanτ because⋃∞

n=1 Bn contains a network ofτ . On the other hand, every basicd-open set is a finite
intersection of aτ -open set with, eventually, sets of typeA1

n andA2
n. This shows thatX

hasP (d, τ) with the countable collection of the finite intersections ofA1
n’s andA2

n’s.
Assume now that the network isσ-isolated with respect toS. We claim thatX has

P (τ,S) with τ -closed sets. As above considerA1
n =

⋃
i∈In

Hi

τ
. Takex ∈ X andU

someτ -neighbourhood of it. Take aτ -neighbourhood ofx such thatV
τ
⊂ U . For some

n ∈ N, there isi ∈ In such thatx ∈ Hi ⊂ V . TakeS ∈ S such thatx ∈ S and
Hi ∩ S ⊂ V . Then

A1
n ∩ S ⊂ Hi ∩ S

τ
⊂ U
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which proves the claim. Transitivity ofP gives thatX hasP (d,S) with τ -closed sets.
iii) ⇒ iv) Assume thatX hasP (d,S) with a sequence(An) of τ -closed sets. Let

{Bj : j ∈ J} be a basis of thed-topology,J =
⋃∞

n=1 Jn where every family{Bj : j ∈
Jn} is discrete. This is possible by the Bing-Nagata-Smirnov Theorem [15]. Put

I = J × N , In,m = Jn × {m} andAn,m = Am.

For i = (j,m) ∈ In,m let Ui the biggest union of sets fromS (may be empty) such that
Am ∩ Ui ⊂ Bj . Then{An,m ∩ Ui : i ∈ In,m} is disjoint and{An,m ∩ Ui : (n,m) ∈
N × N, i ∈ In,m} is a network ford. Finally enumerateN × N.

iii) ⇒ ii) It is trivial.
ii) ⇒ i) The same proof that iniii) ⇒ iv) gives a network ford which isσ-isolated

with respect toS. A network ford is also a network forτ because thed-topology is finer
thatτ .

Recall the definition of fragmentability, due to Jayne and Rogers [14].

Definition 2.3. Let (X, τ) be a topological space andd a metric onX. It is said thatX is
fragmentable byd if for everyε > 0 and every nonemptyA ⊂ X there isU ∈ τ such that
A ∩ U 6= ∅ and diam(A ∩ U) < ε.

The following notion has been considered in topology, amongthe so called “covering
properties”, see [3].

Definition 2.4. A topological spaceX is said to be weaklyθ-refinable (also called weakly
submeta compact) if every open cover ofX has aσ-isolated (non necessary open) refine-
ment. If every subspace ofX is weaklyθ-refinable, then it is said thatX is hereditarily
weaklyθ-refinable.

The interest of the notion of hereditarily weaklyθ-refinable space is that it seems to be
the most general and reasonable “ingredient” that allows topass from “scattered” proper-
ties to “isolated” ones. Compare this result with Theorem 2.2.

Theorem 2.5. LetX be an hereditarily Baire space and letd be a finer metric onX. Then
the following statements are equivalent:

i) X is hereditarily weaklyθ-refinable and fragmented byd.
ii) X hasP (d, τ) with τ -closed sets.

Proof. i) ⇒ ii) Is done in [25].
ii) ⇒ i) By Theorem 2.2K has aσ-isolated network. It is easy to check that a topological
space having aσ-isolated network is hereditarily weaklyθ-refinable. LetX haveP (d, τ)
with a sequence ofτ -closed sets(An). Fix ε > 0 and letC ⊂ X be a nonemptyτ -closed
set. Define the sets

Cn = {x ∈ C ∩ An : ∃U ∈ τ, x ∈ U, diam(An ∩ U) < ε}

SinceC =
⋃∞

n=1 Cn, by the Baire property we have that for somen ∈ N, there exists
V ∈ τ such that∅ 6= C ∩ V ⊂ Cn

τ
. In particular we can takex ∈ Cn ∩ V . Let U ∈ τ

such thatx ∈ U and diam(An ∩ U) < ε. We have

x ∈ C ∩ V ∩ U ⊂ Cn
τ
∩ U ⊂ An ∩ U

and therefore diam(C ∩ V ∩ U) < ε.

Corollary 2.6. Let X be a hereditarily Baire space with aσ-isolated network. Then the
finer metricd given by iii) of Theorem 2.2 is a fragmenting metric.

Corollary 2.7. If (X, τ) is a regular hereditarily weaklyθ-refinable topological space
fragmented by a finer metricd, then theτ -Borel sets coincide with thed-Borel sets inX.

Proof. PropertyP (d, τ) with τ -Borel sets easily implies that everyd-Borel set is aτ -Borel
set, see [22] for details.
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3. BANACH SPACES AND RENORMING

The first basic relation betweenτ -LUR renormability and the existence ofσ-isolated
networks for some vector topologyτ is given by the following result.

Proposition 3.1. Let (X, τ) be a locally convex space. IfX admits aτ -LUR norm, then
(X, τ) has a network which isσ-isolated with respect toτ -open halfspaces.

Proof. In [18] it is proved that the weak topology of aw-LUR Banach space has aσ-
isolated network. For the weak∗ topology of aw∗-LUR Banach space it is done in [25]
using a different approach. Both methods can be easily addapted to prove that ifX has a
τ -LUR norm, then(X, τ) has aσ-isolated network.

By Theorem 2.2 we may consider a finer metricd defined onX such thatX hasP (d, τ).
In order to prove the proposition, we need to show thatX hasP (d,S) whereS denotes
the family of τ -open halfspaces. The transitivity ofP implies that it is enough to prove
thatX hasP (τ,S).

Fix x ∈ X and aτ -neighbourhoodU of x. We claim that there exist two rational
numbers0 < s < r with s < ‖x‖ < r and such that the inequalities

s < ‖y‖ < r and2s < ‖x + y‖ < 2r

imply thaty ∈ U . If not, then we could obtain a sequenceyn ∈ X \ U such that

lim
n

‖yn‖ = ‖x‖ and lim
n

‖x + yn‖ = 2‖x‖,

which would contradict the fact that‖.‖ is τ -LUR. By the Hahn-Banach Theorem, we can
find aτ -open halfspaceH such thatx ∈ H andB[0, s]∩H = ∅. Now, if y ∈ B[0, r]∩H,
thens < ‖x+y

2 ‖ < r, soy ∈ U . This proves thatX hasP (τ,S).

The following result is in [25].

Theorem 3.2. LetK be a descriptive compact space and letd be a finer metric fragment-
ing K. Then there is an equivalent dual norm‖|.‖| onC(K)∗ such that for every bounded
d-continuous functionf : K → X with values into a normed space

lim
ω

‖

∫
f dµn −

∫
f dµ‖ = 0

whenever the measuresµ, µn ∈ C(K)∗ are such thatlimn ‖|µn‖| = ‖|µ‖| andlimn ‖|µ+
µn‖| = 2‖|µ‖|. In particular,‖|.‖| is aw∗-LUR norm.

It follows from the previous result that a compact Hausdorffspace is descriptive if, and
only if, it embeds as a weak∗-compact subset of aw∗-LUR dual Banach space.

The following is a version forw∗-LUR norms of the transfer technique of Godefroy,
Troyanski, Whitfield and Zizler [6, Theorem II.2.1] developed for LUR norms.

Proposition 3.3. LetT : Y ∗ → X∗ be aw∗-w∗-continuous linear operator between dual
Banach spaces. If the norm ofY ∗ is w∗-LUR, thenX∗ has an equivalent dual norm which

is w∗-LUR at the points ofT (Y ∗)
‖.‖

.

Proof. If T were surjective, it is not difficult to prove that an equivalent w∗-LUR norm
‖|.‖| onX∗ would be defined by the formula

‖|x∗‖| = inf{‖y∗‖ : T (y∗) = x∗}

In the general case, the construction can be done as follows.For everyk ∈ N define an
equivalent dual norm‖.‖k onX∗ by the formula

‖x∗‖2
k = inf{‖x∗ − T (y∗)‖2 + k−1‖y∗‖2 : y∗ ∈ Y ∗}
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Notice that due to the weak∗-continuity of the map and the lower semi-continuity of the
norms, the infimum is attained. Define

‖|x∗‖|2 =

∞∑

k=1

2−k‖x∗‖2
k.

It is not difficult to show that‖|.‖| is an equivalent norm. In order to show that it isw∗-

LUR we shall follow the proof of [6, Theorem II.2.1]. So assume x∗ ∈ T (Y ∗)
‖·‖

and
(x∗

n) ⊂ X∗ such that

lim
n

(2‖|x∗‖| + 2‖|x∗
n‖| − ‖|x∗ + x∗

n‖|) = 0

Givenε > 0 andx ∈ BX , let y∗ ∈ Y ∗ such that fork large enough,

‖x∗‖2
k = ‖x∗ − T (y∗)‖2 + k−1‖y∗‖2 ≤

ε

4
,

in particular‖x∗ − T (y∗)‖ ≤ ε
4 . For this fixedk, let y∗

n ∈ Y ∗ such that

‖x∗
n‖

2
k = ‖x∗

n − T (y∗
n)‖2 + k−1‖y∗

n‖
2.

Following a standard convexity argument we obtain

lim
n

‖x∗
n − T (y∗

n)‖ = ‖x∗ − T (y∗)‖ (1)

and

lim
n

(2‖y∗‖2 + 2‖y∗
n‖ − ‖y∗ + y∗

n‖) = 0 (2).

Now since‖.‖ onY ∗ is w∗-LUR, (2) impliesy∗
n → y∗ in the weak∗ topology. Also, for

n ≥ n0, |(T (y∗
n−y∗))(x)| ≤ ε

4 , and by (1)|(T (y∗
n)−x∗

n)(x)| ≤ ε
2 . So|(x∗−x∗

n)(x)| ≤ ε
as we wanted.

Corollary 3.4. Continuous images of descriptive compacta are descriptive.

Proof. Let T : K1 → K2 be a continuous surjection and suppose thatK1 is de-
scriptive. The mapT can be extended to a linearw∗-w∗-continuous surjective operator
T̃ : C(K1)

∗ → C(K2)
∗. SinceC(K1)

∗ has an equivalentw∗-LUR norm, by the former
propositionC(K2)

∗ is w∗-LUR renormable too, and this implies thatK2 is descriptive.

Remark 3.5. More generally, it is proved that the properties of having aσ-isolated net-
work and being hereditarily weaklyθ-refinable are preserved under perfect maps[4].

Corollary 3.6. Let X and Y be Banach spaces and letF ⊂ X∗ be a total subspace.
Assume thatY ∗ is w∗-LUR and there is a bounded linear operatorT : Y ∗ → X with
dense range which is alsow∗-to-σ(X,F ) continuous. Then there exists a coarser norm on
X which isσ(X,F )-LUR (the norm can be taken equivalent if and only ifF is norming).

Proof. We may consider(X,σ(X,F )) as a topological subspace of(F ∗, w∗). We shall
regardT as an operator intoF ∗. ClearlyT is bounded andw∗-to-w∗ continuous. Let‖.‖∗

be the dual norm onF ∗. Since the restriction toX of ‖.‖∗ is ‖.‖F and this norm is coarser
than the norm ofX we getX ⊂ span‖.‖∗

(TY ∗). The application of Proposition 3.3 will
give a dual norm onF ∗ (so equivalent to‖.‖∗) which isw∗-LUR at the points ofX and
the restriction toX of this norm is the desiredσ(X,F )-LUR norm.

Let us denote byacow∗

(K) thew∗-closed absolutely convex hull of a subsetK ⊂ X∗.
The following is an easy consequence of Corollary 3.4.

Corollary 3.7. Let K be aw∗-compact subset of a dual Banach spaceX∗. If K is de-
scriptive, thenacow∗

(K) is also descriptive.
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Proof. After [25], the unit ball ofC(K)∗ is a descriptive compact. Each point ofacow∗

(K)

is the baricenter of some measure fromBC(K)∗ and the map is continuous, thusacow∗

(K)
is the continuous image of a descriptive compactum.

We are now able to prove our Main Theorem from the introduction.

Proof of Theorem 1.3. Like the proof of Corollary 3.6 we may embedX into the dual
spaceF ∗. Thus, without loss of generality we shall assume thatK ⊂ X∗ is a descriptive
w∗-compact subset. We have to prove thatX∗ admits an equivalent dual norm which is
w∗-LUR at the points ofspan‖.‖(K). Consider the operatorT : C(K)∗ → F ∗ defined by
T (µ) =

∫
I dµ.

Statement (1) follows from direct application of Proposition 3.3.
If K is fragmented bypF , that is, the norm ofF ∗, then we shall use Theorem 3.2 in its

full generality. In that case, thew∗-LUR norm‖.‖ onC(K)∗ given by the theorem has the
following property: if

lim
n

‖µn‖ = ‖µ‖ and lim
n

‖µn + µ‖ = 2‖µ‖ for µ, µn ∈ C(K)∗

then

lim
n

‖T (µn − µ)‖ = 0.

Minor changes in the proof of Proposition 3.3 give that the norm ‖|.‖| onF ∗ is LUR.
To prove (3) observe that the norms obtained inX are equivalent topF , and that norm

is equivalent to the norm ofX if, and only if, F is norming. On the other hand, ifX has
an equivalentσ(X,F )-LUR norm, thenF should be a norming subspace.

Corollary 3.8. LetX be a Banach space,F ⊂ X∗ a total subspace andK ⊂ X a descrip-
tive σ(X,F )-compact subset such thatX = span‖.‖(K). ThenX admits an equivalent
rotund norm.

Proof. Let ‖.‖1 the coarserσ(X,F )-LUR norm given by Theorem 1.3. It is easy to verify
that the norm‖.‖2 = ‖.‖ + ‖.‖1 is an equivalent rotund norm onX.

The proof of Theorem 1.3 actually gives the following.

Corollary 3.9. If X∗ is a dual Banach space andK ⊂ X∗ is descriptivew∗-compact
subset, thenX∗ has an equivalent dual norm which isw∗-LUR at the points ofspan‖.‖(K).
Moreover, ifspan‖.‖(K) = X∗ then(BX∗ , w∗) is also a descriptive compact space.

We also write together the stability properties of the classof Banach spaces with de-
scriptive dual ball.

Proposition 3.10. The class of Banach spaces with descriptive dual unit ball, that we shall
denote byD∗, has the following properties:

i) If X ∈ D∗ andT : X → Y is a bounded linear operator such thatT (X) is dense
in Y , thenY ∈ D∗. In particular D∗ is stable by quotiens.

ii) If Y ∈ D∗ and T : X → Y is a bounded linear operator such thatT ∗(Y ∗) is
dense inX∗, thenX ∈ D∗. In particular D∗ is stable by closed subspaces.

iii) If Xi ∈ D∗ for i ∈ I then
⊕

i∈I Xi ∈ D∗ for c0 and lp sums where1 < p < ∞.
If I is countable, the result also holds forp = 1.

Proof. i) T ∗ is one-to-one and thereforeT ∗((BY ∗ , w∗)) is homeomorfic to a w∗-compact
subset ofX∗, hence descriptive.

ii) It follows from Proposition 3.3.
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iii) Fix on each spaceXi a norm such that the dual norms onX∗
i is w∗-LUR. For the

c0-sum we may define an equivalent norm‖|.‖| on
(

c0⊕

i∈I

Xi

)∗

=

ℓ1⊕

i∈I

X∗
i

by the formula

‖|(x∗
i )i∈I‖|

2 = (
∑

i∈I

‖x∗
i ‖)

2 +
∑

i∈I

‖x∗
i ‖

2

It is not difficult to check that the norm‖|.‖| is an equivalentw∗-LUR norm. For theℓp

sum withp ∈ (1,∞), theℓq sum of the dual spaces, whereq is the conjugate exponent, is
w∗-LUR. ForI countable, it is easy to verify that the unit ball of(

⊕ℓ1
i∈I Xi)

∗ =
⊕ℓ∞

i∈I X∗
i

is homeomorphic to the descriptive compact space
∏

i∈I BX∗

i
, see Proposition 4.1.

Remark 3.11. The classD∗ fails to have the three space property. In[7, Theorem 2.3.1]
it is given an example of a Banach spaceX which is not weak Asplund having a separable
subspaceY such thatX/Y is Asplund and WCG.

4. TOPOLOGICAL PROPERTIES OF DESCRIPTIVE COMPACT SPACES

In this section we study “how nice” is the topology of a descriptive compactum and the
behaviour under topological operations of the class of descriptive compacta. We shall also
discuss some examples.

The following proposition puts together some stability properties of the class of de-
scriptive compact spaces. Notice that fragmentable compacta have the same properties
[7].

Proposition 4.1. The class of descriptive compact spaces, that we shall denote byD, has
the following properties:

i) D is stable by closed subspaces.
ii) D is stable by countable products.

iii) D is stable by one-point compactifications of discrete collections.
iv) D is stable by continuous images.
v) If K ∈ D, thenBC(K)∗ ∈ D.

vi) If K is compact,d a lower semi-continuous metric onK and there are closed

subsetsKn ⊂ K such thatKn ∈ D andK =
⋃∞

n=1 Kn

d
, thenK ∈ D.

Proof. Statementsi), ii) andiii) are easy.
iv) Is Corollary 3.4.
v) It follows from Theorem 3.2.
vi) By a result in [13] we may assume thatK is aw∗-compact subset of a dualX∗ and

d is induced by the norm metric. Consider

K0 =

∞⋃

n=1

n−1Kn ∪ {0},

which is a descriptivew∗-compact subset ofX∗. Corollary 3.9 implies that there is a dual
norm onX∗ which isw∗-LUR at the points ofY = span‖.‖(K0). Proposition 3.1 shows
that (Y, σ(Y,X)) has aσ-isolated network. The hypothesis implies thatK is a subset of
Y , therefore it is a descriptive compactum.

A topological spaceX is said to be Fŕechet-Uryshon if every cluster point of some
subsetA ⊂ X is the limit of a sequence inA. The following result shows that descriptive
compacta are close to Fréchet-Uryshon spaces.

Proposition 4.2. If K is a descriptive compact space, then the following properties hold:
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i) K is sequentially compact.
ii) Countably compact subsets ofK are closed.

iii) Hereditarily separable closed subsets ofK are metrizable.

Proof. i) Any fragmentable compact space is sequentially compact [7,19].
ii) In [3, Theorem 9.2] it is proved that any weaklyθ-refinable countably compact space

is compact.
iii) Assume thatK is hereditarily separable. Letd be a finer metric such thatK has

P (d, τ) with a sequence of closed sets(An). It is easy to see that ifDn is a countableτ -
dense set inAn, then

⋃∞
n=1 Dn is d-dense inK, thus(K, d) is separable. We shall prove

that if a compact spaceK is fragmented by a separable finer metric, then there is countable
subset ofC(K) separating the points ofK.

Using the fragmentability ofK, for everyn ∈ N we can findFσ-open sets{Un
α : α <

γn} such that the differences

Dn
α = Un

α \
⋃

β<α

Un
β

have diameter less than1/n and coverK. Since(K, d) is separable, the ordinalγn must be
countable. Clearly the family{Dn

α : α < γn, n ∈ N} separates the points ofX. Now take
continuous functionsfn

α : K → [0, 1] such thatfn
α is zero outsideUn

α andfn
α is strictly

positive onDn
α. Then, the countable family{fn

α : α < γn, n ∈ N} separates the points of
K.

Corollary 4.3. A descriptive compact space has countable tightness and itssequentially
closed subsets are closed.

The former corollary has as a straightforward consequence the following example of
non descriptive compactum, see also [12].

Example 4.4. The interval[0, ω1] is not descriptive.

Alternative ways to obtain the same conclusion is to prove that the Borel sets in[0, ω1]
do not coincide with the Borel sets for the discrete topology[28] and to apply Corollary 2.7;
or to prove that[0, ω1] is not a Gruenhage space [27]. The “long James space”J(ω1), see
[2], is a bidual Banach space having the Radon-Nikodym property which contains a weak∗

compact subset homeomorphic to[0, ω1], so its unit ball cannot be descriptive.
The unit ball of a dual space having a strictly convex dual norm is weak∗-fragmentable.

Neither fragmentable nor Radon-Nikodym compacta [19] can be characterized by embed-
dings into dual Banach spaces with a strictly convex dual norm. Indeed, small changes
in the proof of [6, Theorem VII.5.2] give that the compact space [0, ω1] does not embed
into a dual Banach space with an equivalent strictly convex dual norm. We do not know
if C(K)∗ can be renormed with a strictly convex dual norm whenK is a fragmentable
compact space not containing a copy of[0, ω1].

There are separable, non-metrizable and scattered compacta K such thatK(3) = ∅,
see e.g. [6, Example VI.8.7]. In consequence, there exist descriptive compact spaces
which are no Gul’ko, even no Corson. Recall that a compact space is called Corson if it
is homeomorphic to a subset of[0, 1]Γ made up of elements with countable support, and it
is called Rosenthal if it is homeomorphic to a subset of functions of first Baire class on a
polish space. Since Gul’ko compacta are Corson, see e.g. [6,7], the following example is
interesting to distinguish between the classes.

Example 4.5. There exists a compact Hausdorff spaceK which is Corson, Rosenthal,
no-Gul’ko and descriptive.

Proof. That is the example built by Argyros and Mercourakis [1], seealso [7, section 7.3].
The construction of the example is rather complicate, but all we need to know is that such a
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compact space is Corson compact defined by an almost disjointfamily of subsets ofN (for
the definition see [1, 16]) and these compact spaces satisfy the hypothesis of the following
lemma.

Lemma 4.6. Let K ⊂ {0, 1}Γ be a pointwise compact subset (of characteristic functions
of subsets ofΓ). Suppose that there is a functionΦ : Γ × Γ → N such that for every
χA ∈ K and everyn ∈ N the set

{(a, b) ∈ A × A : a 6= b,Φ(a, b) ≤ n}

is finite. ThenK is a descriptive compact space, i.e. its topology has aσ-isolated network.

Proof. SetDn = {(a, b) ∈ Γ × Γ : a 6= b,Φ(a, b) = n} and putD =
⋃∞

n=1 Dn. Define a
mapT : K → c0(D) as follows: givenχA ∈ K and(a, b) ∈ Dn, then

T (χA)(a, b) = n−1χA(a)χA(b).

The mapT is well defined since for a fixedχA ∈ K, the set(A×A)∩Dn is finite. Clearly,
T is pointwise to pointwise continuous.

It is easy to see that
L = {χA ∈ K : #A ≤ 1}

is a closed subset ofK that may be empty, finite or isomorphic to the one-point compacti-
fication of a discrete space. In any case,L has aσ-isolated network.

The mapT verifies these properties:
1) T (χA) = 0 if and only if χA ∈ L;
2) T is injective restricted toK \ L. Both are straightforward consequences of the

definition ofT .
Let H = T (K) which is a weak compact subset ofc0(D). We claim thatT is a

homeomorphism ofK \ L ontoH \ {0}. We just have to check that the restriction ofT is
an open map. So letU ⊂ K \ L be relatively open. SinceL is closed inK, we have that
U is open inK. Consider the following partition ofK into three subsets:

U, (K \ L) \ U andL.

By properties 1) and 2) above, the images

T (U), T ((K \ U) \ L) andT (L)

are a partition ofH. ThusT (U) is the complement inH of

T ((K \ L) \ U) ∪ T (L) = T (K \ U).

As this last set is compact by the continuity ofT , we deduce thatT (U) is open inH. This
completes the proof of the claim.

Now, asK \ L is homeomorphic to an open subset of an Eberlein compact, it has aσ-
isolated network. Finally,K has aσ-isolated network because bothL andK\L have one.

We finish with an approximation to [6, Problem VII.2] where topological conditions on
the bidual ballBX∗∗ are suggested to guarantee thatX has an equivalent LUR norm.

Proposition 4.7. Let X be a Banach space such that(BX∗∗ , w∗) is descriptive. Then
(BX∗∗ , w∗) is a Fréchet-Uryshon compact andX has an equivalent LUR norm.

Proof. The restriction of aw∗-LUR norm onX∗∗ to X is a w-LUR norm, thusX has
an equivalent LUR norm by [18]. SinceBX∗∗ is sequentially compact,X cannot contain

an isomorphic copy ofl1(N). If A ⊂ BX∗∗ andx∗ ∈ A
w∗

, sinceBX∗∗ has countable

tightness, there isA0 ⊂ A countable such thatx∗ ∈ A0
w∗

. Using again the countable

tightness, takeX0 ⊂ X a separable subspace such thatA0 ⊂ X0
w∗

. This implies that we
can work insideX∗∗

0 . By a well known result of Rosenthal,BX∗∗

0
is Fŕechet-Uryshon, thus



11

we can find a sequence inA0 weak∗ convergent tox∗.

The following example shows that not much more can be expected. The James Tree
SpaceJT , see e.g. [9], is a separable space such thatJT ∗ is not separable andJT ∗∗ is
isomorphic toJT ⊕ l2(Γ) with Γ uncountable, soJT ∗∗ is WCG and thusBJT∗∗ endowed
with the weak∗ topology is a descriptive, Radon-Nikodym, Rosenthal, separable and non
metrizable compact.

Now [6, Problem VII.2] can be rewritten as follows: If a compact space is fragmentable
and Corson, will it be descriptive? If the fragmenting metric is lower semi-continuous the
answer is yes as a consequence of a result by Orihuela, Schachermayer and Valdivia [21],
because in this case the compact is Eberlein.
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