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ABSTRACT. In this paper we study the class of descriptive compact spdlce Banach
spaces generated by descriptive compact subsets and thé&orravith renorming prob-
lems.

1. INTRODUCTION

Compact Hausdorff spaces which are fragmentable by a finerahave been studied
by many authors, see the book [7] for an account of this classropacta. In this paper we
shall consider a subclass of fragmentable compact spaSgsfimely®, that will allow
us to construct an equivalent dual strictly convex norm onia 8anach spac& * if the
dual unit ball lies in®. We have to introduce some terminology. {éf; : i € I} be a
family of subsets of a topological spa¢&, 7). The family is said to bésolatedif it is
discrete in its union endowed with the relative topologgt ik, if for everyi € I and every
x € H;, there is ar-neighbourhood of  such thatd; N U = () for everyj € I,j # i.

If it is possible to pickU from some prefixed familyS C 7, we say that the family is
isolated with respect t§. If there is a decompositioh= | .-, I,, such that every family
{H; : i € 1,} is isolated (with respect t5), then the family{H; : i € I} is said to be
c-isolated(with respect taS). Finally a familyDt of subsets ofX is said to be aetwork

for the topology ofX if every open set is a union of membersof

Definition 1.1. A compact Hausdorff spadeg is said to be a descriptive compact space if
its topology has ar-isolated network.

The class of topological spaces having-gsolated network generalizes in a natural way
metrizable spaces (Bing-Nagata-Smirnov Theorem, se¢l&]). These spaces were first
studied by Hansell in its pioneering work [10] recently gabéd in [12]. He proved there,
among other results, that if a topological space is fragetehy a finer metric, then it has
o-isolated network if, and only if, it has a certain coveringerty, namely, the space is
hereditarily weaklyd-refinable Descriptive Banach spaces have been studied in [12, 20]
and also in the context of renorming theory in [17, 18, 22,223,

The first and more clear example of a descriptive compacespae may come across is
any metrizable compact. Embeddings in§¢I') of Eberlein compacta show that they are
descriptive, sincécy ('), pointwise) has ac-isolated network, [12, 20]. More generally,
Gul'’ko compact spaces are shown to be descriptive too, saadtance [25]. Scattered
compactak with K1) = () are also descriptive: just consider as singletons the point
of each relatively discrete s¢f(*) \ K@D : 0 < o < v} wherey < w; is such that
K™ = (). We shall show later, Lemma 4.6, that Corson compact spafased by “al-
most disjoint families of sets” are also descriptive, whitttiudes an interesting example
of compactum built by Argyros and Mercourakis [1]. On theesthand, the compactum
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[0,w1] is not descriptive [12], see also Example 4.4.

Let us turn now our attention to renorming problems. Someltebave been obtained
recently showing that geometrical properties such as ttstemce of equivalent Kadec or
locally uniformly rotund (LUR) norms in a Banach spa&ecan be characterized by the
existence of certain types of networks of the norm topologpctv ares-isolated for the
weak topology ofX (LUR norms [17, 18, 23], dual LUR norms [23, 24] and Kadec n&rm
[22]). Recently, in [8], it has been proved that the dual bai (with its weaK topology)
is uniformly Eberlein if, and only if, the dual space has’&UR equivalent norm, which
is equivalent taX have a uniformly Gateaux smooth equivalent norm. We shiabbduce
in general the concept afLUR norm, forr a locally convex topology.

Definition 1.2. A norm]||.|| on X is said to ber-locally uniformly rotund at some point
x € X if for every(z,,) C X withlim, ||z,| = |z| andlim, ||z + z,|| = 2||z|, then
7-lim,, x,, = =.

A norm]||.|| on X is said to ber-locally uniformly rotund ¢-LUR) if it is 7-lower semi-
continuous and--locally uniformly rotund at: for everyx € X.

For the case of the weak topology, MlOrihuela, Troyanski and Valdivia [18] proved
that aw-LUR Banach space has an equivalent LUR norm. Mercourakizsti that the
spacec; (X' x T') has apointwise-LUR equivalent norm. He used that fact to build an
equivalentw*-LUR norm in a dual of a WCD Banach space, see also [6]. The neailtr
in [25] shows that a dual Banach spa&é admits an equivalent*-LUR norm if, and
only if, (Bx~,w*) is a descriptive compact space.

In this paper we give sufficient and necessary conditions &arach spac& and
a locally convex topology- to obtain ar-LUR norm (equivalent or coarser) oXi. For
F C X* atotal subspace we shall consider its associated pgrfm) = sup{z*(x) :
x* € Bx« N F}. Recall thatF is said norming ifpr is an equivalent norm oX. Our
main result is about “descriptively generated spaces”

Theorem 1.3. Let X be a Banach spacé; C X* atotal subspace anfl’ C X a descrip-
tive o (X, F')-compact subset such that = span!-I (K). Then the following affirmations
hold:
(1) X admits a coarser (X, F')-LUR norm and the topology (X, F') on X has a
o-isolated network.
(2) Moreover, ifK is fragmented by =, then X admits a coarser norm which jg--
LUR ando (X, F)-lower semi-continuous.
(3) The norms given in (1) and (2) can be taken equivalent to thggrnal norm of X
if, and only if, F' is norming.

This theorem covers both the cases of weakly compactly getwBanach spaces and
dual Banach spaces such thBtx -, w*) is a descriptive compactum. Since a weakly com-
pact subset of a Banach space is descriptive and norm fragtheme get Troyanski’'s
result: a WCG Banach space is LUR renormable, see [6]. Thedhealso applies to
Banach spaces with a Markusevich basis. Indeedzif, f,} is a M-basis onX, and
F = spanll{f,}, then({z,} U {0}) is a descriptiver(X, F')-compact that generates
X. Let us say that statement (2) above also can be deducedresuigs from [24]. The
topological properties of Banach spaces generated by afragmentable compact space
has been recently studied in [5].

Recall that descriptive compact spaces are fragmentable §2e Corollary 2.6 for a
self-contained proof. In section 2 we study the structura déscriptive compactum with
respect to a finer fragmenting metric. Section 3 is devoteertorming, including the proof
of Theorem 1.3. In the last section we show that the class sdrg#ive compacta has a
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behaviour similar to the class of fragmentable compaatajast by Ribarska [26], see also
[7]. Moreover, descriptive compact spaces have nicer ptiggethan fragmentable ones,
see Proposition 4.2. We also discuss some examples to gaecannt of how wide is the
class of descriptive compacta. Part of the results of thigpappeared in a preliminary
version of [25].

2. SPACES WITHO-ISOLATED NETWORK

Hansell's definition of descriptive topological spaces][1&ter called isolated-analytic
spaces in [11], is quite technical. In the case of a compauilégical space, being de-
scriptive in the sense of Hansell is equivalent to say thetisfies Definition 1.1.

The following definition has been used in [22, 23, 24].

Definition 2.1. LetS; and S, be families of subsets of a given $ét We say thatX has
P(S81,8,) with a sequencéA,,) of subsets oX if for everyxz € X and everyl’ € S
withx € V, thereisn € NandU € S; suchthatr € A, NU C V.

One can easily realize that this generalized propBriy also transitive, that is, ik has
P(81752) andP(SQ,Sg) thenX haSP(Sth).

The following result links our property’ with the existence of-isolated networks.
Implications) < i) appears in [10] for topologies.

Theorem 2.2. Let (X, 7) be a regular topological space and ISta subfamily ofr. The
following statements are equivalent:

i) 7 has a network which is-isolated with respect t5.
i) There is a finer metrid such thatX hasP(d, S).
iif) There is a finer metrid such thatX hasP(d, S) with 7-closed sets.
iv) There exists a finer metri¢, 7-closed setsd,, and families{U; : i € I,,} of -
open sets which are union of sets fréhsuch that the familie§A,, NU; : i € I,}
are disjointand{A,, N U, : n € N,i € I,,} is a network ford.

Proof. i) = i) The first step will be to show that there is a metfisuch thatX has
P(d, T) with 7-closed sets, so it is enough to assume that the network @ysirvisolated.
Let {H; : i € I} be a network and = J; , I,, where each famil{H, : i € I, } is
isolated. SinceX is regular, the famin{ET : 4 € I} is also a network for. Take now
T-open setd/; for i € I,, such that

H; c UpandU; N J{H; :j € In,j # i} = 0.
SetAl = User, H, . Sincel; is open, we havél; C Al NU; ¢ H; . This implies
that{AL NU; : n € N,i € I,,} is a network forr.
PutA; = A}, \ U,¢;, Ui. Foreveryn € N, the family

B, ={A2, X\ AL, A, NU;:i€l,}

is a partition ofX. It easy to see thdt).> | B,, is a subbasis for a metrizable topology.
Let d be a compatible metric with that topology. It is clear thHas finer thanr because
U,~, B, contains a network of. On the other hand, every basieopen set is a finite
intersection of ar-open set with, eventually, sets of tygg, and A2. This shows thaf(
hasP(d, T) with the countable collection of the finite intersectionsAdfs and A2’s.

Assume now that the network ts-isolated with respect t&. We claim thatX has
P(7,8) with 7-closed sets. As above considé}, = ., H, . Takex € X andU
somer-neighbourhood of it. Take aneighbourhood of: such thaf’” ¢ U. For some
n € N, there isi € I, such thatt €¢ H; Cc V. TakeS € S such thatz € S and
H;NnS CV.Then

AlnScH,NS cU
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which proves the claim. Transitivity dP gives thatX hasP(d, S) with r-closed sets.

1i1) = iv) Assume thatX hasP(d,S) with a sequencéA,,) of 7-closed sets. Let
{B; : j € J} be a basis of thé-topology,J = |J,_, J,, where every family{B; : j €
Jn} is discrete. This is possible by the Bing-Nagata-Smirnogdrem [15]. Put

I'=JXN,Lj;m=Jn X {m} andAn,m = Ap.

Fori = (j,m) € I, letU; the biggest union of sets fro (may be empty) such that
A, NU; C B;. Then{4,, ,, NU; : i € I, ,,} is disjoint and{A4,, ,, N U; : (n,m) €
N x N,i € I, », } is a network ford. Finally enumerat® x N.

i4i) = 41) Itis trivial.

1) = i) The same proof that if¥i) = iv) gives a network foel which is o-isolated
with respect taS. A network ford is also a network for because thé-topology is finer
thatr. [ |

Recall the definition of fragmentability, due to Jayne and&s [14].

Definition 2.3. Let (X, 7) be a topological space anfla metric onX. It is said thatX is
fragmentable byl if for everye > 0 and every nonemptyt C X there isU € 7 such that
ANU #(Qanddiam(ANU) < e.

The following notion has been considered in topology, amihvegso called “covering
properties”, see [3].

Definition 2.4. A topological spaceX is said to be weaklg-refinable (also called weakly
submeta compact) if every open covetXohas ac-isolated (non necessary open) refine-
ment. If every subspace &f is weaklyf-refinable, then it is said thak is hereditarily
weaklyd-refinable.

The interest of the notion of hereditarily wealdyrefinable space is that it seems to be
the most general and reasonable “ingredient” that allowsass from “scattered” proper-
ties to “isolated” ones. Compare this result with Theoreth 2.

Theorem 2.5. Let X be an hereditarily Baire space and lébe a finer metric orX. Then
the following statements are equivalent:

i) X is hereditarily weakly-refinable and fragmented k¥

i) X hasP(d, ) with 7-closed sets.
Proof. i) = i) Is done in [25].
1) = i) By Theorem 2.2K has as-isolated network. It is easy to check that a topological
space having a-isolated network is hereditarily weakbrefinable. LetX haveP(d, 7)
with a sequence of-closed set$A,,). Fixe > 0 and letC’ C X be a nonempty-closed
set. Define the sets

Chpn={zeCnA,:3U e, zeU, damA4,nU) < e}

SinceC = (J,—, C,, by the Baire property we have that for some= N, there exists

V e rsuchtha) £ CNV c C, . In particular we can take € C,, N\ V. LetU € 7
such thate € U and dianfA,, N U) < . We have

reCnNVNUCGC, NUCA,NU
and therefore diag@ NV NU) < e. [ |

Corollary 2.6. Let X be a hereditarily Baire space with @isolated network. Then the
finer metricd given by iii) of Theorem 2.2 is a fragmenting metric.

Corollary 2.7. If (X, 7) is a regular hereditarily weakly-refinable topological space
fragmented by a finer metri¢, then ther-Borel sets coincide with théBorel sets inX.

Proof. PropertyP(d, 7) with 7-Borel sets easily implies that evedyBorel set is ar-Borel
set, see [22] for details. [ ]



3. BANACH SPACES AND RENORMING

The first basic relation betweenLUR renormability and the existence efisolated
networks for some vector topologyis given by the following result.

Proposition 3.1. Let (X, 7) be a locally convex space. ¥ admits ar-LUR norm, then
(X, 7) has a network which is-isolated with respect to-open halfspaces.

Proof. In [18] it is proved that the weak topology ofwa-LUR Banach space hasea
isolated network. For the we&akopology of aw*-LUR Banach space it is done in [25]
using a different approach. Both methods can be easily aeldap prove that ifX has a
7-LUR norm, then( X, 7) has ac-isolated network.

By Theorem 2.2 we may consider a finer mettidefined onX such thatX hasP(d, 7).
In order to prove the proposition, we need to show thahas P(d, S) whereS denotes
the family of r-open halfspaces. The transitivity &f implies that it is enough to prove
that X hasP(r,S).

Fix x € X and ar-neighbourhood/ of x. We claim that there exist two rational
numberd) < s < r with s < ||z|| < r and such that the inequalities

s < |lyll < rand2s < ||z +y| < 2r
imply thaty € U. If not, then we could obtain a sequengge X \ U such that
lim ||y || = flo| and lim |z + yo | = 2[j])
which would contradict the fact thdt|| is 7-LUR. By the Hahn-Banach Theorem, we can

find ar-open halfspacél such thatr € H andB|0, s]N H = (). Now, ify € B[0,r|N H,
thens < || Z£2|| < r, soy € U. This proves thal hasP(r,S). ]

The following result is in [25].

Theorem 3.2. Let K be a descriptive compact space andddte a finer metric fragment-
ing K. Then there is an equivalent dual noffh||| on C'(K)* such that for every bounded
d-continuous functiorf : K — X with values into a normed space

hmll/fdun [ aul =0

whenever the measurgsy,, € C(K)* are such thatim,, |||, ||| = |||x||| andlim,, |||z +
tnlll = 2|||]|]. In particular, |||.]|| is aw -LUR norm.

It follows from the previous result that a compact Hausdspfice is descriptive if, and
only if, it embeds as a weadkcompact subset of @a*-LUR dual Banach space.

The following is a version fouw*-LUR norms of the transfer technique of Godefroy,
Troyanski, Whitfield and Zizler [6, Theorem 11.2.1] develapfer LUR norms.

Proposition 3.3. LetT : Y* — X* be aw*-w*-continuous linear operator between dual
Banach spaces. If the norm bBf is w*-LUR, thenX* has an equivalent dual norm which
is w*-LUR at the points oT(Y*)” |

Proof. If T" were surjective, it is not difficult to prove that an equivale*-LUR norm
[l-1I] on X* would be defined by the formula

2l = inf{{ly" | : T(y") = ="}
In the general case, the construction can be done as folleaveveryk € N define an
equivalent dual nornj.||;, on X* by the formula

|7 = inf{[la* = T()* + & y*|* v € Y™}
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Notice that due to the weéalcontinuity of the map and the lower semi-continuity of the
norms, the infimum is attained. Define

o0
2" lI1* =D 27 % ll"|I7.
k=1

It is not difficult to show that]|.||| is an equivalent norm. In order to show that iti$-

LUR we shall follow the proof of [6, Theorem 11.2.1]. So asseni € T(Y*)H'” and
(x}) € X* such that

lim (2[[ |2 [[| + 2[[ =[] = [l + 25 [[[) = 0
Givene > 0 andz € By, lety* € Y* such that for large enough,
a7 = lla* =TI+ K~y < 7
in particular||z* — T'(y*)|| < §. For this fixedk, lety; € Y* such that
7 1% = llzr, = Tl + kHlyn .
Following a standard convexity argument we obtain
lim {27, =T (yp)|| = [l=" = T(y™)[ (1)
and
lim (2]l [|* + 2]yl — lly™ + wl) =0 (2)-
Now since||.|| onY* isw*-LUR, (2) impliesy;: — y* in the weak topology. Also, for

n > o, [(T(y; —y") ()] < 5, and by (1) (T(y) —23)()] < 5. Sol(a* —3)(x) < <

as we wanted. ]
Corollary 3.4. Continuous images of descriptive compacta are descriptive

Proof. LetT : K; — K, be a continuous surjection and suppose thatis de-
scriptive. The mag@’ can be extended to a linear*-w*-continuous surjective operator
T : C(K,)* — C(K,)*. SinceC(K;)* has an equivalent*-LUR norm, by the former
propositionC(K>)* is w*-LUR renormable too, and this implies th&t is descriptive ®

Remark 3.5. More generally, it is proved that the properties of having-ésolated net-
work and being hereditarily weakBrefinable are preserved under perfect mgls

Corollary 3.6. Let X andY be Banach spaces and I&t ¢ X* be a total subspace.
Assume that™ is w*-LUR and there is a bounded linear operatdr: Y* — X with
dense range which is also*-to-o (X, F') continuous. Then there exists a coarser norm on
X which iso(X, F')-LUR (the norm can be taken equivalent if and onl§'ifs norming).

Proof. We may conside(X,c(X, F')) as a topological subspace @, w*). We shall
regardl’ as an operator inté™. ClearlyT is bounded ana*-to-w* continuous. Let|.||*
be the dual norm o™*. Since the restriction t& of ||.||* is ||.|| » and this norm is coarser
than the norm ofX we getX c span!'lI" (TY*). The application of Proposition 3.3 will
give a dual norm orf™* (so equivalent td|.||*) which isw*-LUR at the points ofX and
the restriction taX of this norm is the desired (X, F')-LUR norm. [ |

Let us denote byico®” (K) thew*-closed absolutely convex hull of a subgétc X*.
The following is an easy consequence of Corollary 3.4.

Corollary 3.7. Let K be aw*-compact subset of a dual Banach spacé. If K is de-
scriptive, therico®” (K) is also descriptive.
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Proof. After [25], the unit ball ofC(K)* is a descriptive compact. Each poin@b®” (K)
is the baricenter of some measure fréip - and the map is continuous, thae"” (K)
is the continuous image of a descriptive compactum. [ |

We are now able to prove our Main Theorem from the introductio

Proof of Theorem 1.3. Like the proof of Corollary 3.6 we may embed into the dual
spaceF™. Thus, without loss of generality we shall assume thiat: X* is a descriptive
w*-compact subset. We have to prove th&t admits an equivalent dual norm which is
w*-LUR at the points ofpan!| (K'). Consider the operatdrf : C'(K)* — F* defined by
T(u) = [Tdp.

Statement (1) follows from direct application of Propasiti3.3.

If K isfragmented by, that is, the norm of™, then we shall use Theorem 3.2 in its
full generality. In that case, the*-LUR norm ||.|| on C'(K)* given by the theorem has the
following property: if

lim [l || = [[ull @and Tim [l + po] = 2{[ ]| fOF 1, pn € C(K)”

then
lim [T (st — )| = 0.

Minor changes in the proof of Proposition 3.3 give that themg|.||| on F* is LUR.

To prove (3) observe that the norms obtaineirare equivalent tp =, and that norm
is equivalent to the norm oX if, and only if, F' is norming. On the other hand, ¥ has
an equivalent (X, F)-LUR norm, thenF should be a norming subspace. ]

Corollary 3.8. LetX be a Banach spacé; C X* atotal subspace anfi’ C X a descrip-
tive o(X, F')-compact subset such that = span!l(K). ThenX admits an equivalent
rotund norm.

Proof. Let ||.||; the coarses (X, F')-LUR norm given by Theorem 1.3. It is easy to verify
that the normj|.||2 = ||.|| + ||.]|1 is an equivalent rotund norm ox. [ |

The proof of Theorem 1.3 actually gives the following.

Corollary 3.9. If X* is a dual Banach space and C X* is descriptivew*-compact
subset, thei * has an equivalent dual norm whichiis -LUR at the points afpan! /! (K).
Moreover, ifspanl - (K) = X* then(Bx-,w*) is also a descriptive compact space.

We also write together the stability properties of the cleisBanach spaces with de-
scriptive dual ball.

Proposition 3.10. The class of Banach spaces with descriptive dual unit ek, we shall
denote by®,, has the following properties:

i) If X € ©,andT : X — Y is abounded linear operator such that X) is dense
inY, thenY € D.. In particular ©. is stable by quotiens.
i) fY € ©,andT : X — Y is a bounded linear operator such th@t (Y *) is
dense inX*, thenX € ®.. In particular ®, is stable by closed subspaces.
iy If X; € ©, fori € Ithen®, ; X; € D, for ¢y andi,, sums wheré < p < co.
If I is countable, the result also holds for= 1.

Proof. i) T* is one-to-one and therefo& ((By -, w*)) is homeomorfic to a wcompact
subset ofX *, hence descriptive.
i) It follows from Proposition 3.3.



iif) Fix on each spac&’; a norm such that the dual norms &f} is w*-LUR. For the
co-sum we may define an equivalent noffifrj|| on

co * 01
i€l el
by the formula

(@)serlll* = Q=5 )+ a1

el el

It is not difficult to check that the norrfy.||| is an equivalentv*-LUR norm. For the/,
sum withp € (1, c0), the, sum of the dual spaces, wheyés the conjugate exponent, is
w*-LUR. ForI countable, it is easy to verify that the unit ball(@lel i)t = @fg} X/
is homeomorphic to the descriptive compact spge; Bx:, see Propositon4.1. =

Remark 3.11. The classD., fails to have the three space property.[f) Theorem 2.3.1]
it is given an example of a Banach spaXewhich is not weak Asplund having a separable
subspacé&” such thatX /Y is Asplund and WCG.

4. TOPOLOGICAL PROPERTIES OF DESCRIPTIVE COMPACT SPACES

In this section we study “how nice” is the topology of a degtivie compactum and the
behaviour under topological operations of the class ofrifgse compacta. We shall also
discuss some examples.

The following proposition puts together some stability gedies of the class of de-
scriptive compact spaces. Notice that fragmentable cotagzave the same properties

[7].

Proposition 4.1. The class of descriptive compact spaces, that we shall ddry®, has
the following properties:

i) © is stable by closed subspaces.
i) D is stable by countable products.
iii) ® is stable by one-point compactifications of discrete ctittes.
iv) ® is stable by continuous images.
V) If K € ©,thenBg(k)- € D.
vi) If K is compact,d a lower semi-continuous metric oﬁ and there are closed

subsetdy,, C K such thatk,, € © and K = U 1 Ko ,thenK €D.

Proof. Statements), i¢) andiii) are easy.

iv) Is Corollary 3.4.

v) It follows from Theorem 3.2.

vi) By aresultin [13] we may assume thidtis aw*-compact subset of a dual* and
d is induced by the norm metric. Consider

= Jn 'K, U{0},
n=1
which is a descriptivev*-compact subset of *. Corollary 3.9 implies that there is a dual
norm onX * which isw*-LUR at the points oy = span!!l(K,). Proposition 3.1 shows
that (Y, o (Y, X)) has ao-isolated network. The hypothesis implies tiatis a subset of
Y, therefore it is a descriptive compactum. ]

A topological spaceX is said to be Fechet-Uryshon if every cluster point of some
subsetd C X is the limit of a sequence iA. The following result shows that descriptive
compacta are close to&ahet-Uryshon spaces.

Proposition 4.2. If K is a descriptive compact space, then the following propsettiold:



i) K is sequentially compact.
i) Countably compact subsets &fare closed.
iii) Hereditarily separable closed subsetsfofare metrizable.

Proof. i) Any fragmentable compact space is sequentially compaddz,

i1) In [3, Theorem 9.2] itis proved that any wealdyefinable countably compact space
is compact.

iii) Assume thatk is hereditarily separable. Leétbe a finer metric such thdt” has
P(d, ) with a sequence of closed sé€t$,,). It is easy to see that D, is a countable-
dense setim,,, thenJ >~ , D,, is d-dense inK, thus(K, d) is separable. We shall prove
that if a compact spack is fragmented by a separable finer metric, then there is ablet
subset ofC'(K) separating the points df.

Using the fragmentability of<, for everyn € N we can findF,-open set{U” : a <
~» } such that the differences

pp=ur\ | Up
<o
have diameter less tharin and coverk. Since(K, d) is separable, the ording), must be
countable. Clearly the familyD” : « < ~v,,n € N} separates the points &f. Now take
continuous functiong?” : K — [0,1] such thatf” is zero outsid&/” and f” is strictly
positive onD?. Then, the countable familyf” : a < 7,,n € N} separates the points of
K. |

Corollary 4.3. A descriptive compact space has countable tightness asgdsentially
closed subsets are closed.

The former corollary has as a straightforward consequemeddilowing example of
non descriptive compactum, see also [12].

Example 4.4. The interval[0, w; ] is not descriptive.

Alternative ways to obtain the same conclusion is to proes tie Borel sets iff), w; |
do not coincide with the Borel sets for the discrete topol@®] and to apply Corollary 2.7;
or to prove that0, w; ] is not a Gruenhage space [27]. The “long James spégey), see
[2], is a bidual Banach space having the Radon-Nikodym ptgpehich contains a weak
compact subset homeomorphic/@ow; ], so its unit ball cannot be descriptive.

The unit ball of a dual space having a strictly convex duatmisrweak -fragmentable.
Neither fragmentable nor Radon-Nikodym compacta [19] eanharacterized by embed-
dings into dual Banach spaces with a strictly convex duatmoindeed, small changes
in the proof of [6, Theorem VII.5.2] give that the compact &p#, w,] does not embed
into a dual Banach space with an equivalent strictly conuead dorm. We do not know
if C(K)* can be renormed with a strictly convex dual norm wheris a fragmentable
compact space not containing a copy@fu |.

There are separable, non-metrizable and scattered camfiastich thatk®) = (),
see e.g. [6, Example VI1.8.7]. In consequence, there existriigtive compact spaces
which are no Gul'ko, even no Corson. Recall that a compaatesjgcalled Corson if it
is homeomorphic to a subset[of 1] made up of elements with countable support, and it
is called Rosenthal if it is homeomorphic to a subset of fiamst of first Baire class on a
polish space. Since Gul'’ko compacta are Corson, see e.g], e following example is
interesting to distinguish between the classes.

Example 4.5. There exists a compact Hausdorff spa€ewhich is Corson, Rosenthal,
no-Gul'’ko and descriptive.

Proof. That is the example built by Argyros and Mercourakis [1], abse [7, section 7.3].
The construction of the example is rather complicate, Buteheed to know is that such a
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compact space is Corson compact defined by an almost difgoiilly of subsets oN (for
the definition see [1, 16]) and these compact spaces sdistyypothesis of the following
lemma.

Lemma 4.6. Let K C {0,1}' be a pointwise compact subset (of characteristic functions
of subsets of’). Suppose that there is a functidn: I' x I' — N such that for every
xa € K and everyn € N the set

{(a,b) e Ax A:a+#b,P(a,b) <n}
is finite. Thenk is a descriptive compact space, i.e. its topology hasisolated network.

Proof. SetD,, = {(a,b) € T x " : a # b, ®(a,b) = n} and putD = | J°~_, D,,. Define a

n=1

mapT : K — c¢y(D) as follows: giveny4 € K and(a,b) € D, then

T(xa)(a,b) =n""xa(a)xa(b).

The map! is well defined since for a fixeds € K, the se{ A x A)nD,, isfinite. Clearly,
T is pointwise to pointwise continuous.
It is easy to see that
L={xac€K:#A<1}
is a closed subset df that may be empty, finite or isomorphic to the one-point cattipa
fication of a discrete space. In any cabéhas as-isolated network.

The mapT’ verifies these properties:

1)T(xa)=0ifandonlyif y4 € L;

2) T is injective restricted tadX \ L. Both are straightforward consequences of the
definition of T'.

Let H = T(K) which is a weak compact subset @f(D). We claim thatT is a
homeomorphism oK \ L onto H \ {0}. We just have to check that the restrictiorofs
an open map. So léf C K \ L be relatively open. Sincé is closed inK, we have that
U is open inK. Consider the following partition oK into three subsets:

U, (K\L)\UandL.
By properties 1) and 2) above, the images
T(U), T(K\U)\ L)andT(L)
are a partition off. ThusT'(U) is the complement it/ of
T(K\L)\U)UT(L)=T(K\U).

As this last set is compact by the continuityofwe deduce thaf'(U) is open inH . This
completes the proof of the claim.

Now, asK \ L is homeomorphic to an open subset of an Eberlein compadcisiah-
isolated network. Finallyi{ has ar-isolated network because batrand K\ L have ondal

We finish with an approximation to [6, Problem VII1.2] wher@tdogical conditions on
the bidual ballBx -« are suggested to guarantee thahas an equivalent LUR norm.

Proposition 4.7. Let X be a Banach space such th@x-,w*) is descriptive. Then
(Bx++,w") is a Fréchet-Uryshon compact and has an equivalent LUR norm.

Proof. The restriction of av*-LUR norm on X** to X is aw-LUR norm, thusX has
an equivalent LUR norm by [18]. SindBy -~ is sequentially compacf{ cannot contain
an isomorphic copy of; (N). If A C Bx+ andz* € aY, sinceBx-+ has countable
tightness, there isl, C A countable such that* € A," . Using again the countable

tightness, take&Xy C X a separable subspace such thgtC Yow*. This implies that we
can work insideX*. By a well known result of RosenthaB - is Frechet-Uryshon, thus
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we can find a sequence ity weak' convergent tac*. ]

The following example shows that not much more can be exgectée James Tree
SpaceJT, see e.g. [9], is a separable space such ffidt is not separable and7™** is
isomorphic toJT @ I5(T") with I uncountable, sd7** is WCG and thusB -~ endowed
with the weakK topology is a descriptive, Radon-Nikodym, Rosenthal, ssga and non
metrizable compact.

Now [6, Problem VII.2] can be rewritten as follows: If a congpapace is fragmentable
and Corson, will it be descriptive? If the fragmenting metsi lower semi-continuous the
answer is yes as a consequence of a result by Orihuela, Sshaayer and Valdivia [21],
because in this case the compact is Eberlein.
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